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Abstract

Occasionally, situations arise where mixtures of two binomials with one

known success parameter are met. An example in educational testing is the

mastery or random guessing model in which an examinee is supposed either to

master the items or not to master them and to guess blindly. This paper

gives moment estimators for such mixtures any presents results from a Monte

Carlo investigation into their statistical properties. The results suggest

excellent estimatcrs which can safely be used in most instances. It also

indicates how the properties of these estimators relate to those of moment

estimators for the case both success parameters are unknown. Finally, it is

pointed out that in situations in which errors in specifying the true value

of the known parameter may occur, it might be prudent to consider this para-

meter as unknown and to estimate accordingly.
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The Use of Moment Estimators for Mixtures of

Two Binomials with One Koown Success Parameter

In some areas of scientific research frequency distributions can be

encountered which may be conceived of as mixtures of more elementary dis-

tributions. These mixtures usually arise because the frequences were

generated by separate random processes each accounting for a different part

of the data, or because the data were aggregated across some other, mostly

unobserved variable. Typically, mixtures display a multimodal form of which

each mode can be identified with one of the underlying distributions. Exam-

ples of mixtures can be found in the areas of testing the protective power

of sera (Muench, 1936, 1338), classification in anthropology (Rao, 1948), and

genetics (Powers, 1951). A review of the use of mixtures is given in Blischke

(1963).

An important class of mixtures of distributions in educational and psy-

chological testing is the beta-binomial model, introduced in this area by

Keats and Lord (1962). In this model, which is used most when item sampling

is involved, the conditional distributions of observed scores given the

relative (generic) true score is the binomial; the marginal distribution of

the observed scores is the beta-binomial or negative hypergeometric, obtained

from the binomials by using a beta distribution over the true score as mixing

distribution. Another example can be found in the area of mastery testing

(Meskauskas, 1976; van der Linden, 1980a), where a class of models is in

use known as latent class or state models (Besel, 1973; Dayton & Macready,

1976; Emrick, 1971; Emrick & Adams, 1969; Macready & Dayton, 1977). For a

domain of test items, these models postulate two latent states, a "mastery"
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and a "nonmastery" state, which are each characterized by a different set

of success probabilities for the items. In a simple version of these models,

these probabilities are assumed to be equal to each other for the mastery as

well as the nonmastery state, implying a mixture of two binomials for the

observed score distribution with the probability of a latent master as

mixing parameter. Another version allows these probabilities to vary across

the items, however, and is basically a mixture of two compound binomial

distributions (which, to complicate matters, themselves are mixtures of

Bernoulli distributions; see, e.g., Walsh, 1953, 1959, 19E3).

In this paper, we focus on mixtures of two binomials with one known

success parameter. We shall show how moment estimators can be obtained for

the remaining unknoNn parameters of such mixtures and present results from

a Monte Carlo study carried out to explore the statistical properties of

these estimators. The latter also ihvolves the properties of an estimated

Bayes rule that can be computed from these estimators, and which is suited

for classifying observations into the two unknown states represented by the

binomial success parameters. As an example of the use of a mixture of two

binomials with one known success parameter, we shall refer to the latent

class model of mastery testing proposed by Emrick and Adams (1969) in which

the success paramete.' for tne nonmastery is set equal to the reciprocal of

the number of alternatives of the items. This "mastery or random guessing

model" was considered by Reulecke (1977a) and alluded to in an example by

Emrick (1971). But readers not familiar with mastery testing could also

think of one of the other areas referred to above, for example, mixtures of

distributions in genetics in which one of the underlying distributions

follows from genetic theory.

7
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Before turning to the derivation of moment estimators for the present

case, we note that moment estimators for the case of a known mixing para-

meter have been considered by Blischke (1962) and that Monte Carlo results

f4r the case of both success parameters as well 4S the mixing parameter

unknown were presented in an earlier paper (van der Linden, 1980b).

Moment Estimators with One Known Success Parameter

Let X1, Xm be m identically and independently distributed random

variables, each with possible values x = 0, 1, n and probability

function

(1) p(x) = 0)(4'(1 - p)ax(1 - a)n-x + p8x(1 On-1.

We assume that a is the known parameter and, without loss of generality,

that

(2) a < 8.

Note that the strict inequality in (2) avoids degeneration of (1) into a

single binomial. For this reason it is also assumed that a > 0, B < 1, and

(3) 0 < p < 1.

It can be shown that a Bayes rule for deciding whether an observed

value x was generated by a process with a or 8 as value for the success
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parameter takes a monotone shape. According to this rule we decide on para-

meter value a for otserved values smaller than

(4) c*

- a
nln- + ln

1 - a 1 - p

a(1 - a)
In

all - a)

and a otherwise, where A is the loss ratio 21/22 with 21 indicating the loss

associated with x < c* and a and 22 with x > c* and a (see, e.g., Emrick &

Adams, ]969).

Now the problem is to estimate a and p as well as the critical value

c
*

based upon these from a sample x1, xm.

In our example, the mastery or random guessing model, (1) is taken to

represent the probability of a number right score X = x on a test of n items

for an examinee randomly drawn from a population with a proportion of masters

equal to 11. For a master the probability of a successful reply to an item is

equal to 13, whereas it is assumed that nonmasters guess blindly and have a

probability of success equal to a = q
-1

, q being the number of item alterna-

tives. The critical value c* is used as a cut-off score on the test for

classifying examinees as a master or a nonmaster. Since the quantities a,

p, and c* are unknown, they must be estimated from the test scores of m

randomly selected examinees.

Generally, the method of moments expresses the parameters to be esti-

mated as explicit functions of population moments and next substitutes the

corresponding sample moments to obtain estimators for these parameters. The

9
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method of moments ordinarily yields simple, closed-form estimators, which

are consistent under mild conditions (Rao, 1972, p. 351).

Following Muench (1938) and Blischke (1962), we will not consider

central moments or moment about the origin but the functions

= E X(X - 1)...(X - k + 1) n(n - 1)...(n - k + 1)

which are, up to the factor n(n - 1)...(n - k : 1), equal to the kth facto-

rial moment and have the elegant property that for the mixture of binomials

given in (1)

(5) fic = (1 P)a
k

+ 116
k

Since there are only two parameters to be estimated, we can restrict

our attention to k = 1, 2. For these values, it holds that

(6)

and

4)1 a = a),

(7) 11)2 a
2

= P(a
2

a
2
),

respectively. From (6), it follows that

(8) p
IP1 a

- a

10
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(9) a
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Moment estimates for .3 are now obtained by estimating 11)1 and 11)2 from a

sample xl, ..., xi, ..., xm as

1 n
ti)

1 m
= x./n = 3i/n

i=1

1
*
2- = m

x.(x. - 1)/n(n - 1) = s
2
+ 70Z - 1) n(n - 1),

i=1

7 and s
2
being the sample mean and variance, respectively, and substituting

these into (9). Estimates for p follow upon substitution of 11)1 and 8 into

(8), Finally, 0 and p can be substituted into (4) to obtain an estimate of

c
*

.

Monte Carlo Results

The properties of the estimators derived in the preceding section were

examined by means of a Monte Carlo experiment in which the two success

parameters, a and 8, the mixing parameter, p, the test length, n, and the

sample size, m, were varied and the consequences for the expected error of

estimation and the risk function were determined. The last two were computed
A A

for both 0 and p as well as the estimated Bayes rule c1. The present

experiment was basically a replication of an experiment used to investigate

11
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the properties of moment estimators for the case both success parameters

as well as the mixing parameter are unknown (van der Linden, 1980b). The

same parameter sets were used to be able to compare the outcomes of both

experiments.

In Tables 1 - 4, c is a generic symbol for an error of ctstimation and

Ec and Ec2 denote the estimated expected error of estimation and risk

function under squared error loss, respectively. The results reported in

these tables are each based on 1,000 replications and data generated with the

aid of random procedures from the NAG Fortran Library (1977). The center

colum in Tables 1 - 3 represents the same parameter set and can be used

as a benchmark.

Table 1 shows how the expected error of estimation and the risk vary

Insert Table 1 about here

as a function of (a, 13). On the whole the results for 8 and u are excellent.

All values of Ec and Ec2 differ only in their third decimal from zero, with

the exception of those for ; and (a, B) = (.40, .60), which are slightly larger.

The values for 2*, which were, as indicated by their subscripts, computed for

A equal to .25, 1, and 4, display the same pattern. For (.10. .90) and (.25,

.75) the results are excellent, but a less favorable impression was obtained

for (.40, .60). In this case the values for the risk function are too large,

even when evaluated against n = 10. When (a, a) . (.40, .60), the situation

approaches that of a single binomial. This expresses itself in less efficien-
A

cy for c* and, to some extent, for p, indicating that the mixing parameter

and tile rule for seperating observations from both separate binomial dis-

tributions are estimated less reliably. The estimator of 8 is not influenced
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by the size of the difference between both success parameters, however.

In Table 2 it can be seen how the properties of the moment estimators

Insert Table 2 about here

depend upon the value of the mixing parameter p. For all values of p, the

results for a and p as well as c" are extremely uood. (Again, it should be

noted that the results for ca must be evaluated on a scale differirn by a
A

factor of n = 10 from the one for 8 and p.) The only tendency to be ob-

served is a slight increase in the values of Es and Ec2 with the value of

p. This is not surprising, since the larger the deviation of p from .50,

the .nre a situation of a single binomial is approached. Unlike Table 1,

the moment estimator of p itself does not display this tendency in Table 2.

Table 3 gives the results of our Monte Carlo experiment for test

Insert Table 3 about here

lengths of n = 5, n = 10, and n = 20. The results for a and p are equally

good for all values of n used. Taking the scale of 2* into account, it is

clear that the results for 2*, already extremely good for n = 5, are bette-

the larger the value of n.

From Table 4 it can be derived that even for a sample size of n = 25 I

Insert Table 4 about here

and p have favorable properties. As for the expected error of estimation
A, A,

the same applies to c", but the efficiency of c" is less favorable compared

13
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with most of the results in Tables 1 - 3. As could be expected, an increase

of the sample size pays well. Table 4 clearly shows how the values of Ee

and Ec2 decrease with an increase in the value of m.

During the experiment we kept track of the nt ,ber of cases inadmissible

values for the moment estimators were met. No such cases arose, however.

Since the values for a, a, u, n, and m chosen in our experiment display a

large variability, this seems to suggest that when using the moment

estimators from this paper we do not need to worry about the possibility

of meeting estimates iying outside the range of values their parameters

are defined on.

Discussion

Comparing the above results with those obtained earlier for moment

estimators for the case a is unknown (van der Linden, 1980b), it appears

that knowing the true value of a yields considerable advantages. This holds

for both Ee and Eel, but most for the latter. In most cases a gain in ef-

ficiency equal to a factor of two or three can be observed. It also appears

that the present estimators get less "upset" when the model comes close to

a single binomial. Especially, the Ee and Eel values for Sand p are hardly,

if at all, influenced when this takes place; the values for 2' are in

some cases low enough for use in practice. A comparable impression can be

derived from a comparison of both sets of moment estimators for small sample

sizes.

The cause of these differences between both sets of estimators goes back

to the fact that the present estimators use only the first two sample moments,
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whereas the estimators for the case a is unknown are based on the third

sample moment as well. This is more dependent on the relatively few observa-

tions in the tails of the sample distribution and it is therefore a less

reliable estimate of the corresponding population moment.

The results in this paper can also be compared with results that were

obtained for so- called endpoint estimators (van der Linden, 1980b). This

method, which, to our knowledge, was introduced by Muench (1936) and used

for Emrick's and Adam's model by Reulecke (1977a, 1977b), estimates the

parameters from the frequencies in the tails of the sample distributions.

When a'is known, this method simply ignores the estimation of a and the
A A

estimators for a and u remain the same. So the properties of a and u in

this paper can be compared directly with those of the endpoint estimators

for a and u in van der Linden (1980b). However, the latter turned out to

be beaten in all resr-:ts by Or moment estimators for a unknown, and

since these are in turn beaten by the estimators in the present paper, it

follows that the last ones are always to be preferred when a is known.

It should be noted that the choice between the moment estimators for

a known and a unknown do3s not depend only on whether or not a model is

available which allows us to specify the value of a. The accuracy with

which this can be done should also be taken into account. The estimators

for a unknown have properties which are, although surpassed in quality by

those for a known, excellent enough for most applications. When the error

in specifying the value of a can be expected to be large, it might there-

fore be prudent to consider a an unknown parameter and to estimate ac-

cordingly. A comparison between the results presented in this paper and

in van der Linden (1980b) can assist in this choice.

15
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As a final comment we observe that the applicability of tkz! model in

this paper depends not only on the accuracy with which a can be specified

but also on the degree to which the data can be approximated by a mixture

of two binomials. In order to determine the latter, a straighforward proce-

dure is to fit (1) to the sample distribution and to use the residuals for

q
an ordinary x'-analysis. If the model does not appear to fit satisfactorily,

the residuals can be inspected for possible improvements on the model. It

is recommended that this be done when the model cannot be assumed to hold a

priori.

16 ]
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TABLE 1

Results for Moment Estimators with Varying Success

Parameters and p = .70, n = 10, and m = 100

(a, 0) (.10, .90)

Ec Ec2

(.25, .75)

Ec Ec2

(.40, .60)

Ec EE
2

.000 .000 -.001 .000 -.002 .001

.002 .002 .001 .003 .024 .020

c.25 -.003 .024 -.013 .039 -.044 2.010

t
1

-.003 .027 -.015 .051 -.510 2.925

t
*

-.003 .031 -.017 .064 -.584 4.102
4



The Use of Moment Estimators

17

TABLE 2

Results for Moment Estimators with Varying Mixing

Parameter and a = .25, 6 = .75, n = 10, and m = 100

u .50 .70 .90

EE
r
cE

2
EE EE

2
EE EE

2

.000 .001 -.001 .000 .000 .000

.000 .004 .001 .003' .000 .001

.002 .048 -.013 .039 -.004 .079

.001 .067 -.015 .051 -.037 .088

.000 .090 -.017 .064 -.038 .099

21
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TABLE 3

Results for Moment Estimators with Varying Test

Length and a = .25, 8 = .75, p = .70, and m = 100

n

R

D

el
5.

e

e

5 10 20

Ec Ec
2

Ec Ee2 EE EE
2

.001 .001 -.001 .000 .000 .000

.000 .004 .001 .003 -.001 .003

2
-.008 .039 -.013 .039 .004 .050

-.009 .056 -.015 .051 .005 .059

-.010 .078 -.017 .064 .005 .069

22
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TABLE 4

Results for Moment Estimators with Varying Sample

Size and a = .25, B = .75, p = .70, and n = 10

c
.25

e
1

1

25 50 500

Ec Ec
2

Ec Ec
2

Ec Ee2

.002 .002 -.001 .001 .000 .000

.005 .012 .002 .007 .000 .001

-.031 .192 -.023 .087 .000 .007

-.031 .245 -.026 .112 -.001 .010

-.032 .308 -.029 .142 -.001 .012

23
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